

Adaptive Resource Management Technology for NASA Computing Systems

Lonnie R Welch and David M Chelberg
Center for Intelligent, Distributed & Dependable Systems

Ohio University, Athens, OH 45701
{welch | chelberg}@ohio.edu

Barb Pfarr

Systems Engineering and Advanced Concepts Division
NASA Goddard Space Flight Center, Greenbelt, MD 20771

barbara.b.pfarr@nasa.gov

 Abstract - This paper addresses the problem of making the
best use of computing and buffer resources in systems that
operate in dynamic environments. The problem is addressed by
providing solutions for system specification, performance
monitoring, allocation optimization, and allocation enactment.
This paper presents these solutions and shows how they have
been applied to a prototype of a potential satellite system of the
near future.

 This approach has several drawbacks. Operations costs are
high, because satellites require full-time ground support to
monitor and maintain satellite health, and engineers are
required to solve resource allocation anomalies that may
occur onboard. The benefit obtained from satellite operations
is sometimes sub-optimal, because valuable data may be
discarded when a buffer is full of less valuable data.
Furthermore, the system has limited capabilities for graceful
degradation when computing and storage resources become
overloaded due to anomalies. Finally, errors and allocation
anomalies may persist for prolonged periods of time because
monitoring and maintenance of satellite health and safety
data is performed offline.

I. INTRODUCTION

 NASA satellite and robot systems operate in dynamic
environments, wherein the conditions cannot be known a
priori. Thus, the ability for these systems to adapt
dynamically is critical. If they cannot adapt, then the return
on investment for these systems is likely to be much less than
could be achieved otherwise. Furthermore, autonomous
adaptation is desirable, due to the complexities involved in
determining appropriate adaptations and because of the high
latencies in commanding the adaptations from the earth.

 This paper shows how to address these drawbacks with
adaptive resource management middleware that operates
online and allocates computing and storage resources
optimally. The technology is useful for onboard satellite
systems as well as for robotic systems. Specifically, it will
(1) enable satellites to autonomously decide which data
should be captured and stored, and (2) allow robots to
determine dynamically how to best use their computing
resources, to plan, to analyze, to explore, etc.

 This paper addresses the problem of making the best use
of computing and buffer resources for systems that operate in
dynamic environments. To understand the problem, consider
current earth-observing satellites, which have the following
properties:

 The problem is addressed by providing solutions for
system specification, performance monitoring, allocation
optimization, and allocation enactment. The remainder of
this paper presents these solutions and shows how they have
been applied to a prototype of a futuristic satellite system.

• Software processes are allocated to computing and
storage resources statically.

 • Collected scientific data is stored in a buffer and
downloaded in first-in-first-out (FIFO) order. II. RESOURCE MANAGER

 • Algorithms are designed to have only a single version
that runs at a fixed fidelity. In previous years, the authors of this paper have

developed adaptive resource management [1] middleware
solutions primarily in the context of dynamic shipboard
computing [2]. Recent efforts have applied adaptive
middleware solutions to satellite systems [3]. The initial
prototype of the architecture presented in this paper is
discussed in [4], and a description of how to use benefit
functions is given in [5]. The middleware architecture
presented in this paper is depicted in Fig. 1.

• Buffer overflow is handled by simply discarding any
scientific data that is collected after the buffer is full,
even though the new data may be more valuable than
data that is already stored in the buffer.

This work was funded in part by the NASA Earth Science Technology
Office Advanced Information Systems Technology Program; and by the
NASA Computing, Information and Communications Technology Program.

Fig 1. Architecture of the resource management middleware.

 The real-time application system (RTAS) consists of
one or more groups of tasks that have real-time constraints
(these task groups are called paths). The tasks in a group may
be distributed. Some tasks, task groups or systems may be
able to run at varying qualities of service, depending on
resource availability and on performance requirements. For
example, at its highest quality of service, an image-
processing algorithm would process every pixel in each
image, and at a degraded quality of service it would ignore
some pixels.
 Each RTAS is managed by a meta-agent (MA), which
monitors the real-time performance of the subsystem and
determines when resource reallocations are necessary for
maintaining adequate performance. To perform its task, an
MA receives information on performance and resource needs
from the RTAS and obtains data about each RTAS’s relevant
features (e.g., its structure and its real-time requirements).
When a MA determines that its RTAS needs additional
resources, it notifies the service quality optimizer.
 The service quality optimizer (SQO) makes adjustments
in quality-of-service (QoS) levels of one or more RTASs in
order to satisfy requests from MAs. Upon receiving a request
from an MA, the SQO determines if it is possible to satisfy
the resource demands by adjusting QoS levels of RTASs. In
addition to checking constraint feasibility, the SQO also
considers the overall scientific benefit (called utility) that
results from various QoS combinations, and selects the
combination that yields the highest utility. Upon finding a
suitable allocation, the SQO notifies the MAs of any QoS
level changes that must be made. If the SQO cannot find a
feasible allocation, it requests a reallocation of resources
from the resource allocation optimizer.
 The resource allocation optimizer (RAO) determines the
best way to allocate resources to application systems. Its
main task is to assign tasks to processors. To do this, it
considers the utility that would result from various
assignments and chooses the assignment with the highest

utility. To make decisions about the suitability of allocations,
the RAO obtains information from the resource monitoring
component. The resource control component carries out
reallocation decisions.

real-time
application system. . .

meta-
agent

service quality
optimizer

resource allocation
optimizer

software system
descriptions

resource
descriptions

meta-
agent. . .

. . .

real-time
application system

resource
monitoring

resource
control

III. USEFULNESS FOR ONBOARD PROCESSING

IN SATELLITE SYSTEMS

 The resource management middleware has been applied to
prototype software that is being developed under an ESTO-
funded grant for possible use on future autonomous satellite
systems The prototype contains software components that
perform the following tasks: simulation of image capture by
a camera, analysis of the captured images by an image
processing agent (IPA), compression of images by a
compression agent (CA), production of simulated health and
safety information about the satellite by a health and safety
data agent (HSDA), and download of data by the data
management agent (DMA).
 Resource management was applied to the Image
Processing Subsystem, which contains a simulated camera
sensor that collects image data, an agent (IPA) processes the
data, and an actuator (CA) takes an action based on the
results of processing the data. The entire processing “path”
from camera through CA has a timing requirement.
 The camera captures raw images of the Earth based on a
schedule. The extrinsic attribute observation_importance
specifies how important the area of observation is to the user.
The extrinsic attribute frequency specifies the image capture
rate. Both extrinsic attributes are reported to the Meta-Agent.
 The Image Processing Agent (IPA) uses a simplified
NOAA algorithm to calculate the cloud cover in an image to
help establish the benefit of that image. The algorithm has
been modified to skip pixels in order to speed up calculation,
thus varying the amount of processing time required. The
number of pixels processed is controlled by the service
attribute pixels set by the Meta-Agent. The extrinsic attribute
cloud_cover is reported to the Meta-Agent.
 The Compressor Agent (CA) uses various compression
algorithms on images presented to it by the IPA.
Compression algorithms include no compression, lossless
compression, lossy compression, and discarding an image.
The compression algorithm, and thus resource usage, of the
CA depends on the service attribute compression.
 The Health and Safety Data Agent (HSDA) produces
variable amounts of information about various metrics to
help engineers on the ground quickly diagnose satellite
problems. The amount of data the HSDA stores into the
buffer is determined based on the service attributes:
power_service, pressure_service and temperature_service.
The HSDA passes the extrinsic attributes power, temperature
and pressure to the Meta-Agent as measured from sensors on
the satellite.
 The Data Management Agent (DMA) keeps a record of all
the data elements in the buffer and their associated download
priorities. When the network downlink is available, the data

transfer process will connect to a data receiver and begin
downloading the data in order by highest priority first. The
priority of data is determined by the subsystem that produced
the data and the extrinsic attributes related to the data such as
the cloud-cover of an image. A confirmation of download
for the data is sent to the satellite from the ground.
 To better demonstrate the concept of operation for the
prototype system under the control of the adaptive resource
manager (ARM), consider the following example. Assume
that all the ARM middleware is running on the system.
When the camera, IPA, CA, HSDA, and DMA are started,
the Allocation Manager Agent allocates agents to resources
to maximize benefit and meet deadlines using default values
for extrinsic attributes.
 According to an a priori schedule, the camera reports the
extrinsic attributes of observation_importance and frequency
to the Meta-Agent, and takes an image of the Earth. The
Meta-Agent sets the service attribute pixels for the IPA based
on the available resources and the expected cloud_cover.
The IPA processes the image and updates the Meta-Agents
expectation of cloud_cover. Based on the available
resources and the actual cloud-cover, the Meta-Agent sets the
compression service attribute for the CA. The CA
compresses the image and stores it in the buffer.
 The resource manager has several options when choosing
the compression service level. Based on user-defined benefit
functions, a high value for the cloud_cover may indicate that
the Meta-Agent should choose a high compression method
since the image probably has little scientific benefit. This
reduces the amount of space used in the buffer in order to
make room for future images and health and safety data that
may provide greater benefit. If there is little cloud_cover ,
the Meta-Agent notifies the Global Meta-Agent that the use
of more buffer would produce more benefit than previously
expected. The Global Meta-Agent evaluates the request for
improving the service provided to the IPS, and may ask the
Allocation Manager Agent for a new allocation or adjust the
allowable service attributes for each sub-system based on
overall system benefit. When the cloud_cover increases to a
high value, the Meta-Agent reports lower benefit values
received from running the sub-system with the current
amount of resources available. The Global Meta-Agent may
restrict the amount of resources that the sub-system is
receiving by either asking for a reallocation or by altering the
allowable service attributes through the Meta-Agent.
 When the satellite is found to have normal extrinsic
attribute values for temperature, power and pressure, the
HSDA produces a normal or low amount of health and safety
data. When power, pressure or temperature significantly
deviates from the norm, the Meta-Agent sets the service
attributes power_service, temperature_service or
pressure_service to a higher value depending on what
extrinsic attributes are abnormal. The degree to which the
Meta-Agent will increase the service attribute depends on the
amount of resources available for storing the data.

 The interactions between sub-systems, such as the IPA
and HSDA’s competition for buffer space, can become quite
complicated. Changing the service attributes associated with
an agent may not adhere to monotonic properties in all
resources. For example, changing the compression service
attribute associated with the CA may increase processing
requirements when increased but, at the same time, may
decrease buffer requirements. The optimization framework
must ensure that trade-offs between granting resources to one
sub-system as opposed to another are weighed and evaluated
in full to obtain optimality. This is a computationally
prohibitive problem, but the use of a hierarchical agent-based
architecture allows lower-level agents (Meta-Agents) to
refine near-maximized benefit solutions proposed by higher-
level agents (the Allocation Manager Agent and the Global
Meta-Agent) to approach maximized benefit in real-time.

IV. CONCLUSIONS

 One of the current trends in spacecraft software design is
to increase the autonomy of onboard flight and science
software. For many science missions, the ability of the
spacecraft to autonomously respond in real-time to
unpredicted science events is crucial for mission success.
This paper presents resource management middleware that
employs utility theory to optimize the real-time performance
of application software and to achieve maximum system
level benefit. It also illustrates how this methodology can be
extended to manage both software and observational
resources onboard a spacecraft to achieve the best possible
observations.

REFERENCES

[1] B. Ravindran, L. Welch and B. Shirazi, "Resource Management
Middleware for Dynamic, Dependable Real-Time Systems," The
Journal of Real-Time Systems, 20:183-196, Kluwer Academic Press,
2000.

[2] Lonnie R. Welch And Behrooz A. Shirazi, "A Dynamic Real-Time
Benchmark for Assessment of QoS and Resource Management
Technology," The IEEE Real-Time Technology and Applications
Symposium, 36-45, June 1999.

[3] L. Welch, B. Pfarr, and B. Tjaden, “Adaptive Resource Management
Technology for Satellite Constellations,” The Second Earth Science
Technology Conference (ESTC-2002), Pasadena, CA, June 2002.

[4] S. Jain, L. Welch, D. Chelberg, Z. Tan, D. Fleeman, D. Parrott, B.
Pfarr, M. Liu, and C. Shuler, "A collaborative problem solving agent
for on-board real-time systems," The 10th Workshop on Parallel and
Distributed Real-Time Systems, April 2002.

[5] D. Andrews, L. Welch, D. Chelberg, and S. Brandt, "A Framework for
Using Benefit Functions in Complex Real-Time Systems," The 10th
Workshop on Parallel and Distributed Real-Time Systems, April 2002.

